skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ling, Feng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The collective patterns that emerge in schooling fish are often analyzed using models of self-propelled particles in unbounded domains. However, while schooling fish in both field and laboratory settings interact with domain boundaries, these effects are typically ignored. Here, we propose a model that incorporates geometric confinement, by accounting for both flow and wall interactions, into existing data-driven behavioral rules. We show that new collective phases emerge where the school of fish “follows the tank wall” or “double mills.” Importantly, confinement induces repeated switching between two collective states, schooling and milling. We describe the group dynamics probabilistically, uncovering bistable collective states along with unintuitive bifurcations driving phase transitions. Our findings support the hypothesis that collective transitions in fish schools could occur spontaneously, with no adjustment at the individual level, and opens venues to control and engineer emergent collective patterns in biological and synthetic systems that operate far from equilibrium. 
    more » « less